On the Pointwise Maximum of Convex Functions

نویسندگان

  • S. P. FITZPATRICK
  • S. SIMONS
چکیده

We study the conjugate of the maximum, f ∨ g, of f and g when f and g are proper convex lower semicontinuous functions on a Banach space E. We show that (f ∨g)∗∗ = f∗∗ ∨g∗∗ on the bidual, E∗∗, of E provided that f and g satisfy the Attouch-Brézis constraint qualification, and we also derive formulae for (f ∨ g)∗ and for the “preconjugate” of f∗ ∨ g∗.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The conjugate of the pointwise maximum of two convex functions revisited

In this paper we use the tools of the convex analysis in order to give a suitable characterization for the epigraph of the conjugate of the pointwise maximum of two proper, convex and lower semicontinuous functions in a normed space. By using this characterization we obtain, as a natural consequence, the formula for the biconjugate of the pointwise maximum of two functions, provided the so-call...

متن کامل

On Fejér Type Inequalities for (η1,η2)-Convex Functions

In this paper we find a characterization type result for (η1,η2)-convex functions. The Fejér integral inequality related to (η1,η2)-convex functions is obtained as a generalization of Fejér inequality related to the preinvex and η-convex functions. Also some Fejér trapezoid and midpoint type inequalities are given in the case that the absolute value of the derivative of considered function is (...

متن کامل

On max-k-sums

The max-k-sum of a set of real scalars is the maximum sum of a subset of size k, or alternatively the sum of the k largest elements. We study two extensions: First, we show how to obtain smooth approximations to functions that are pointwise max-k-sums of smooth functions. Second, we discuss how the max-k-sum can be defined on vectors in a finite-dimensional real vector space ordered by a closed...

متن کامل

Variational representation , HCR and CR lower bounds

It should be noted that the requirement of f to be convex in the definition of f -divergence is essential. In Euclidean spaces any convex function can be represented as the pointwise supremum of a family of affine functions and vice versa, every supremum of a family of affine functions produces a convex function. Take f(x) = 12 |x− 1| as an example. We see that it can be written as a pointwise ...

متن کامل

POINTWISE CONVERGENCE TOPOLOGY AND FUNCTION SPACES IN FUZZY ANALYSIS

We study the space of all continuous fuzzy-valued functions  from a space $X$ into the space of fuzzy numbers $(mathbb{E}sp{1},dsb{infty})$  endowed with the pointwise convergence topology.   Our results generalize the classical ones for  continuous real-valued functions.   The field of applications of this approach seems to be large, since the classical case  allows many known devices to be fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000